—Chapter 11—

Magnetic Fields
In Matter
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11-1 The Moment of Current Loop

A. THE MOMENT OF CURRENT LOOP

(1) The vector potential of a current loop at 7 is given by

4 | r
where 7 = |77 -7 |, the distance from the current-element to the point

7. Write 1/# in the form of a power series with Legendre polynomials,
1 1

7 Nr24+71r2—-2rr'cosa

!

= %Z <£—> B, (cosa)

n=0
1 r 1 3cosla—1
:—+—cosa+——r’2¥+
r r2 r3 2

where a is the angle between 7 and 7. Thus, we obtain
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®
The integral depends only on the closed loop. This power series is
called the multipole expansion of the vector potential.

(2) Since the integral of the vector displacement around a closed loop is

zero, i.e.,

fdi’=o

then we find that the first term, which is called the monopole, is
always zero, i.e.,

> Holl jg
A 2 gdl'=0
©= it r

For the second term, which is called the dipole, we have

fr’ cosadl = f(f‘ -7) dl’
Then we can use a bit of vector calculus to simplify the dipole term.
Let ¢ be some constant vector. We obtain

E-f(f-f")di’=f(f-f")8-di’
:f(vrlx(f-F’)5)-d&’
=f(vr/(f«F')x5)-da'
=f(f><6)-d&’
:j(dd’xr“)-a

:fﬁ(r #)dl’ —fda X 7
We then define
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m=1 J dda' = 1d -+ called magnetic dipole moment

The dipole term of the vector potential is
S 11 mx
Ay =L fd&'xf—”“

4 12
For the third term, which is called the quadrupole, we have
- [10] 1 A 5n\2 512 2

Thus, the vector potential becomes

2 2
o [mxF 1 (3(?-?’) —|f'|) ,
A—4n[ — +r3f > dl' +

quadrupole
where the quantities m depends only on the loop.

THE MAGNETIC FIELD OF THE MOMENT

The vector potential of a magnetic dipole is given by

=—— where m = Id = magnetic dipole moment

If m is at the origin and points in the z-direction, the vector potential
at point (r, 9,(],’)) is

<

/
'
L
=y

Thus, we have
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(2) The magnetic field of a magnetic dipole is

B=VxA
1 .1 1.
rzsinﬂr rsin@ r¢
B 0 0 i}
| or 20 ¢
. _Ugmsin®
0 0 0—
rsing ——s
11 . 1.
r2 sin@r rsinf T
o 9 9 9
| or 90 F)
sin? @
0 0
T
_Ho

m ~
4ﬂ-r—3(2 cosOt + sin99)

B
—

m

&5

As we are far away a current ring, the field of a magnetic dipole would
equal to the one of an electric dipole. Meanwhile, the magnetic field
close to a current loop is entirely different from the electric field close
to a pair of separated positive and negative charges.
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Electric dipole. Magnetic dipole.
Since
> P
V-E=—
€o

the electric field starts at the positive charge and ends up at the
negative charge. The electric field points down between the charges.
Since

V-B=0
inside the current ring, the magnetic field does not end and points up.
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11-2 Magnetization

A. MAGNETIC DIPOLE MOMENT OF AN ELECTRON

(1) Orbital magnetic dipole moment
We begin with one electron moving at constant speed on a circular
path around the nucleus,

Massive nucleus

Electron

V=W X7
The orbital angular momentum is

L=m7X¥=m,rvz=mriws
Recall that the current is the charge passing a given point per unit

time. The current is

%
e e ew € ev
I:——-:———:——-:——:——
T 2 2m 2m 2mr
W
An=-2r
m 2
m
f/ \\
I_‘ /I
R
ev
=
2nr
The magnetic dipole moment is therefore
. 2s_ €V o, evr e -
m=Inr“z = nmrez=——7z2=
2nr 2 2m,

(2) Spin magnetic dipole moment
We define the spin angular momentum as

-

S
The magnetic dipole moment of the electron spin is
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Consider the force on a small piece of the loop
dF =dqB x B = Adlvd x B = lvdlo x B = Id[ x B

qul

The torque is

?=f?xdﬁ'=frdFsin9=f1rdlBsin9
—da
Since

dl =rdo’

we obtain
T

7= IrZBsinﬁf d®' = Inr?Bsin® =m x B
0 =m
This torque rotates the dipole unless it is placed parallel or anti-

parallel to the field.

If we apply an external and opposite torque, it neutralizes the effect of
this torque given by 7 and it rotates the dipole from the angle 8, to an
angle 8 at an infinitesimal angular speed without any angular
acceleration. The amount of work done by the external torque can be
given by
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6 0
W= | 7-ds= | mBsinfdf = —mB(cosf, — cos0)
Considering the initial angle to be the angle at which the potential

energy is zero, the potential energy of the system can be given as,

/A N
U= —W=mB(cos§-—C059> = —mBcosf =—m-B

MAGNETIZATION

With an applied field, randomly oriented permanent magnetic dipoles
in a sample are aligned with an applied magnetic field.
B
A A
R~ [
< W <l B
N\ |t
SN T
ZVN T
BT L1 1
)

The oriented dipoles will produce an additional magnetic field in the

N
direction of B. This phenomena is known as paramagnetism.

Ordinarily, the electron orbits are randomly oriented, and the orbital
dipole moments cancel out. But in the presence of a magnetic field, the
orbital dipole moments points opposite or antiparallel to the magnetic
field. This phenomena is known as diamagnetism which is really a

quantum phenomenon.

A material is magnetized when a lot of little dipoles, point parallel or
antiparallel along the direction of the field. A convenient measure of
this effect is

M=mN = magnetic dipole moment per unit volume

which is called the magnetization.

THE FIELD PRODUCED BY MAGNETIZED MATTER
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(1) Suppose we have a piece of magnetized material - that is, an object
containing a lot of microscopic dipoles 1 lined up.

dt

The polarization M is given. The electric potential, at some external

point, is
L Hy (M XA
A=— | ——dt’
41 72 t
Since
v 1 _ 7
) 2
we have
- — 1
A =@J_M><V’<——>dt’
T
Since

we have

) 1 _, M
A=2 f—-(v’ x M) dz’ —fv’ X <—)dr’
A |) » 7
Let ¢ be some constant vector. We can find Gauss's divergence
theorem in the form as

v (Fixé dr=j§ W x &) - da
[ (ixe)ar = 1 x2)
Using vector product rules of V and triple products identity:

V-(Mxé)zﬁ-(VxM)—M-(VxE)=E-(V><1\7i)
(an)-da:—a-(ﬁxda)

Thus, we have
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LE-(Vxﬁ)drz—ic*-(ﬁxd&)ﬁf(Vlei)dr

v
=—QM xda
S
Then we express the vector potential as
- 1
A=22 | — (v xi)dv +52 f—xd*'
41 )y r
surface
current
density
1 (1\7 x 7' )
o [ Lgi)ar + 2o g L gy
47‘[ 4m Jg 7
volume
current
density
We then let
fb =V XM - volume current density
K, =Mx#a - surface current density

fb and I?b are called bound current.

(2) The magnetic field produced by a magnetized matter is

B=VxA4
K,
LY I +__3§V><—”da'
4m J,, 7 am Jg 7
7 X ], 7 %K,
=—ﬂ- ——ib-dr’—ﬂ ?da’
am ), »? am Js 2
Ho ]bx”’A’ , Mo [Kp X7 )
=— | ———dt'+— ——da
i ), r i Jg r
Consider a case of a uniformly magnetized matter, i.e., M = constant.
Since
T, =V xM=0
we obtain
B uofl_()bda’ X 77 _“OKbé da' x +#
An)y w2 4w [ a2

This is the Biot-Savart law for a surface current.
Physical interpretation:

Suppose that there is a uniformly magnetized slab. The slab consists of
many dipoles represented by tiny current loops.
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All the "internal" currents cancel, but at the edge there is no adjacent

loop to do the canceling. The whole thing, then, is equivalent to a
single ribbon of current flowing around the boundary.

Kb =Mxf
The magnetic field at any point outside the magnetized matter is the
same as the field at the corresponding point in the neighborhood of a
surface current flowing around the matter.

E(‘.\'
@y /M;\
\NraBRiini 1

/\4 7 T T T Q:D ~——" surface = Kb

Z N . ]

EXAMPLES:
1. Find the magnetic field produced by an infinite slab of matter
with uniform magnetization.

[OIOMOIOMOMOMOMOMOMOMO)

IR

®®O® 0
ANSWER:
J,=VxM=0
K,=Mxn
For the top surface current, we have I?b =—Msin8y.
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Using Ampére's law, we obtain the magnetic field inside the slab
produced by the top surface current:

fﬁ'cﬁ:Bxl=/,10Kbl:>§=,u0Msin9£
e

2. Find the magnetic field of a uniformly magnetized sphere.

ANSWER:
Choosing the z axis along the direction of M , we have
Jo=VxM=0

I?b =M><ﬁ=Msin9q[3

The field is that of a surface current.

Since a rotating spherical shell, of uniform surface charge o,
corresponds to a surface current density

K =00 =0Rwsind ¢ = dRw =M

the field of a uniformly magnetized sphere is identical to the field
of a spinning spherical shell.

Since the vector potential of a spinning spherical shell is |c.f.6-2]

0Rw ~ M ~
EO—g——rsian):'uOTrsianb , r<R
A= HooR*wsin® . uoR3Msinf . pugmsing
3 2 PTT3  P T 2 ¢ r=R
Thus, the field of the spinning spherical shell:
e Forr <R:
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B=VxA
1 1 . 1.
rzsinHT rsin@ r¢
_ i) 0 0
| oar 96 Bl
M
0 0 rsin@ HOT rsin @
1 1 . 1.
oM r2sinf@  rsin® r('b
=" i) i) i)
or 00 d¢p
0 0 r?sin? 0
2uoM ~
= —#g—— (cos 0+ —sin@ 9)
2 .
= §#0MZ
The field inside the spherical shell is uniform.
e Forr>R:
B=VxA
1 1 . 1.
rzsinﬁr rsin@ r¢
_ 0 0 0
| or 96 El)
msin @
0 0 rsin @ _Hin 2
1 1 . 1.
rzsinHr rsin @ r¢
_Hom| O 8 8
T am | or a6 ¢
0 sin? @
T

Hom . A
=——=(2cosO7 +sinf o
47-”.3 ( )
3. An infinitely long circular cylinder carries a uniform

magnetization M parallel to its axis. Find the magnetic field (due

to M ) inside and outside the cylinder.
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ANSWER:
J,=VxM=0
K,=Mxa=Mp
The field is that of a surface current. Using Ampére's law, we
have
— {,uOKb =uoMs2, r<R
0 , r=R

o
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11-3 Magnetic Susceptibility
AMPERE'S LAW WITH MAGNETIZED MATTER
Consider a long copper rod carries a uniformly distributed (free)

current f . Since copper is weakly diamagnetic, so the dipoles will line
up opposite to the field.

A

Jr i
Rl
r 4

ih (tx,

i
i

[

This results in a bound current fb running antiparallel to f £, within the

wire, and I?b parallel to f ¢ along the surface.
The total current can be written as

J=Jr+Jp
Ampére's law can be written
VX§=H0i=#0(if+ib) =H0(jf+VXM)
Collecting together the two curls:
. — S 1. S
VX(B—yOM)=u0]f=>Vx<—B—M> =J;
Ho
We then define a vector function H as

i=l5_w
Ho
In terms of H, then, Ampere's law reads
Using Stokes' theorem,
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f(Vxﬁ)-dd=3§ﬁ-d§and J]}-d&:If
S c S

we obtain Ampére's law in integral form:

(63

EXAMPLES:
1. A long copper rod of radius R carries a uniformly distributed

(free) current I. Find H inside and outside the rod.

Ree o

Amperian loop

ANSWER:
Inside the wire:

S ns? L Is .
chdS:HZT[S:If:IW:)H:W

Outside the wire:
o o I .
H-dS=H2ns=I,=1=>H=—
£ s =l 2ns¢

Since M = 0 outside the wire, so we have

2. An infinitely long cylinder, of radius R, carries a "frozen-in"
magnetization, parallel to the axis,
M = krz
There is no free current anywhere.
(a) Locate all the bound currents, and calculate the field inside
the cylinder they produce.
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(b) Use Ampere's law to find H inside the cylinder, and then
get B.

z

a
\______B_/

=l

w

ANSWER:
(a)

The volume current is

1, . 1.
R R
J,=VxM=|0d 0 0|=-k¢

or ap 0z

0 0 kr

The surface current is

K, =M x A = kR

The bound currents produce a solenoidal field. The field outside
the cylinder will be equal to zero and the field inside the cylinder
will be directed along the z axis. Its magnitude can be obtained
using Ampgre's law:
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—Bl

R—>
—K,! —f T, ld?]
T

= Uo[—kRlL+ klL(R — 1)]
= —uokrl
Thus, the field inside the cylinder is

B-ds

S

Uo

fﬁ -dS§=HIl=0 " no free current
¢

B. LINEAR MEDIA

(1) Since in the laboratory, the current is the thing read on the ammeter
which determines H. Thus, we assume that in the presence of a field H ,
the magnetization is proportional to the field.

M = yH
where y,, is called the magnetic susceptibility.
Xm 1S positive for paramagnets and negative for diamagnetis where
Xm ~ 1075 for most ordinary materials.
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Material Susceptibility  Material Susceptibility

Diamagnetic: Paramagnetic:

Bismuth —1.7x 107" Oxygen (0,) 1.7 % 1070

Gold —3.4 % 107 Sodium 8.5 % 10°°

Silver —24 % 107 Aluminum 22 %1073

Copper —9.7x 10®  Tungsten 7.0 x 1073

Water —9.0 x 10°®  Platinum 2.7 x 107

Carbon Dioxide 1.1 x 107%  Liquid Oxygen 3.9 x 1077
(—200° C)

Hydrogen (H2)  —2.1 x 107Y  Gadolinium 48 % 107!

(2) Thus, we obtain
- 1 1

Helfoy Hole—" 5=
" po(1+xm)
where pu is called the permeability of the material, yg is called the

Ho

permeability of free space.

EXAMPLES:

1. An infinite solenoid (n turns per unit length, current 1) is filled
with linear material of susceptibility y,,. Find the magnetic field

inside the solenoid.

z
<
(=
<
<
[s
s
<
<
— ¥
]
ANSWER:
ST T
S
—

ol [~ ———f
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The line integral of H around the loop is equal to
ﬂgﬁ -d§$ = HL
e
The free current intercepted by the Ampérian loop is equal to
Iy = nIL
The H field is
H=nlz
The magnetic field inside the solenoid is equal to
B = ,uo(l + )(m)H = #0(1 +)(m)nlz“
The magnetization of the material is equal to

M= )(mﬁ = ymnlz
and is uniform. Then, the bound surface current is equal to

I?b=ﬁxﬁ=xmﬁxﬁ=xmn1$

2. A sphere of linear magnetic material is placed in an otherwise

uniform magnetic field §0. Find the total field inside the sphere.

By
ANSWER:
e Method I:
Inside the magnetized sphere, the total field is
B =B, +B,
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Since

— Xm
M:X r____ im0 ’
" .“0(1+Xm)
and [c.f.11-2]
— 2[10—>
Bin=_3_M
we obtain
T+ xm) = =  2Ho— — 1 By 3xm B
oLt am) i 5 | 2o o Bo _ 3xm Bo
Xm 3 (1+xm) 2Ho 3+ XmHo

Am 3
The total field inside the sphere can be also expressed as
G =5 4 2Ho 3m By _3(1 +xm) =
TS 3t xmbo | 3+ Im
Method II:

The external field §0 will magnetize the sphere:

0

Moy = ymHo = ———= By

This magnetization will produce a uniform magnetic field inside
the sphere [c.f.11-2]
- 2 2 B 2 B
B, = = oM, = Xm Xm
Bt ) 0 3+ 1m)

3
This additional magnetlc field magnetizes the sphere by an
additional amount:

.“0(1 + )(m)
_ Im 2Xm =
= B,
o(1+ xm)3(1 + xm)

This additional magnetization produces an additional magnetic
field inside the sphere:

2
By, = —uoM; = g — Xm—B <ﬁ>
m

3 37 310 (1+ xm)”
The total magnetic field inside the sphere is therefore equal to
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2 " 1 3(1 + xm)
B= Z <__Xil_'> By = By = Kom B,
1

_ZX—m 3+Xm
3(1+ xm)

BOUNDARY-VALUE PROBLEMS WITH DIELECTRICS

According to Helmholtz theorem, the magnetic field B is uniquely
determined by
VxEB=puyandV-BE=0
Since the divergence of H is not always zero:
V-H=—V-B-V-M=-V-M=0
. Ho
H cannot be uniquely determined by the free charge only as
VX 17 = ]-;'ree .
Thus, we need boundary conditions on H at various dielectric surfaces.

We choose a Gaussian surface for a very tiny area dd and let the
thickness go to zero.

D Air p,

(2) Media u

Since

fﬁ-da:f(v-ﬁ)drz—f(v-M)drz—fM’-da
S v v S

we obtain
H,,da—H, da=—M;,da+ M,,da
Air media Air media
= Hy, —Hyy = =My, + My,
H, is also discontinuous across the surface of the magnetized matter.
We then can choose a closed loop such that the width goes to zero as
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D Air y,

A
Hyy
2) Media u

Thus, we obtain

%H ~ds = Hyyds — Hyds = Kgeeds > Hyp — Hyp = Kpee X7
¢ —_ —— — —
Air media media © media @

H, is discontinuous across the surface of the magnetized matter. For

linear media H = B /i, we have

By By z A
- - — = Kfree Xn
Hy e,

media ®  media @
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11-4 Ferromagnetism

DOMAINS

Ferromagnets—which are emphatically not linear—require no external
fields to sustain the magnetization; the alignment is "frozen in."

L B
\

In a ferromagnet, each dipole "likes" to point in the same direction as
its neighbors. The reason for this preference is essentially quantum
mechanical.

The alignment occurs in relatively small patches, called domains.

Each domain contains billions of dipoles, all lined up, but the domains
themselves are randomly oriented.

Near the walls the spin of atoms of one region get slowly oriented in
the favorable direction of neighboring domain.

I~

thin wall

g

HYSTERESIS [histe" ¢ sas| LOOP

Domains parallel to the field grow, and the others shrink. If the field is
strong enough, one domain takes over entirely, and the iron is said to
be saturated.
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Starting with unmagnetized iron, M = 0, increasing H causes M to rise
in a conspicuously nonlinear way, slowly at first, then more rapidly,
then very slowly, finally flattening off.

Mi

(Permanent | . f (Saturation)
Magnet) ?
d a I3 !
: i ' (Permanent
(Saturation)

Magnet)

If we now slowly decrease the current, thus lowering H, the curve does
not retrace itself. Instead, we find the behavior is irreversible, which is
called hysteresis. It is largely due to the domain boundary movements
being partially irreversible.
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